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Abstract: Hyperspectral image (HSI) clustering is generally a challenging task because of the complex
spectral-spatial structure. Based on the assumption that all the pixels are sampled from the union
of subspaces, recent works have introduced a robust technique—the sparse subspace clustering
(SSC) algorithm and its enhanced versions (SSC models incorporating spatial information)—to
cluster HSIs, achieving excellent performances. However, these methods are all based on the linear
representation model, which conflicts with the well-known nonlinear structure of HSIs and limits
their performance to a large degree. In this paper, to overcome these obstacles, we present a new
kernel sparse subspace clustering algorithm with a spatial max pooling operation (KSSC-SMP) for
hyperspectral remote sensing data interpretation. The proposed approach maps the feature points
into a much higher dimensional kernel space to extend the linear sparse subspace clustering model
to nonlinear manifolds, which can better fit the complex nonlinear structure of HSIs. With the
help of the kernel sparse representation, a more accurate representation coefficient matrix can be
obtained. A spatial max pooling operation is utilized for the representation coefficients to generate
more discriminant features by integrating the spatial-contextual information, which is essential
for the accurate modeling of HSIs. This paper is an extension of our previous conference paper,
and a number of enhancements are put forward. The proposed algorithm was evaluated on two
well-known hyperspectral data sets—the Salinas image and the University of Pavia image—and the
experimental results clearly indicate that the newly developed KSSC-SMP algorithm can obtain very
competitive clustering results for HSIs, outperforming the current state-of-the-art clustering methods.

Keywords: hyperspectral images; subspace clustering; nonlinear techniques; kernels; spatial max pooling

1. Introduction

Hyperspectral sensors acquire nearly continuous spectral bands with hundreds of spectral
channels to capture the diagnostic information of land-cover materials, opening new possibilities
for remote sensing applications such as mineral exploration, precision agriculture, and disaster
monitoring [1–3]. As an unsupervised information extraction technique, clustering is a very useful
tool for hyperspectral image (HSI) interpretation. When labeled samples are unavailable or difficult to
acquire, clustering can be an effective alternative [4]. Clustering can be defined as a partition process,
which involves grouping similar pixels while separating dissimilar ones. However, due to the complex
nonlinear structure and large spectral variability, clustering HSIs is a very challenging task.
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The traditional clustering methods that are commonly applied to HSIs, such as k-means [5] and
fuzzy c-means (FCM) [6], attempt to segment pixels using only the spectral information. However,
because of their limited discriminative capability and weak adaptation to the nonlinear structure
of HSIs, such methods often fail to achieve satisfactory results. In recent years, to address this
issue, a number of spectral-spatial clustering methods have been developed, such as S-k-means [7]
and FCM-S1 [8], which have been shown to be able to improve the performance of unsupervised
clustering. In addition, supervised spectral-spatial segmentation methods, such as Markov random
field (MRF)-based methods [9] and graph-based methods [10], have also been widely used in remote
sensing data interpretation.

Subspace-based and sparse representation based approaches have recently drawn wide attention
in the context of high-dimensional data analysis, due to their excellent performance. By modeling the
data via low-dimensional manifolds, the inherent structure of the data can be better explored [11,12].
As a perfect combination of these two theories, the sparse subspace clustering (SSC) algorithm [13,14]
has achieved great success in the computer vision field. By treating pixels from the same land-cover
class that have different spectra as belonging to the same subspace, the SSC algorithm has also
shown great potential in HSI clustering [15–17], which is mainly due to its capacity to address the
spectral variability problem. However, SSC interprets the HSIs only with the spectral information,
and it ignores the rich spatial information contained in the images. As a result, the obtained
performance is limited. In order to account for the spatial information contained in HSIs, SSC
models incorporating spatial information have become very popular. In a recent study [15], the
spectral-spatial sparse subspace clustering (S4C) algorithm was proposed to improve clustering
performance by the use of a spectral weighting strategy to relieve the high correlation problem between
hyperspectral pixels and a local averaging constraint to incorporate the spatial information contained
in the eight-connected neighborhood. As an enhanced approach incorporating spatial information, the
`2–norm regularized sparse subspace clustering (L2-SSC) algorithm [16] was developed to exploit the
inherent spectral-spatial properties of HSIs in a more elaborate way, and can achieve a good effect.

One important consideration is that the aforementioned linear methods often have difficulty in
coping with the inherently nonlinear structure of HSIs. In recent years, a number of methods have
been proposed to deal with the linear inseparability problem in HSI data interpretation. Among these
methods, kernel-based algorithms are one of the most commonly used methods. These approaches
map the HSI from the original feature space to a much higher dimensional kernel feature space,
in which the classes are assumed to be linearly separable. For example, Mercier and Lennon [18]
developed support vector machines for hyperspectral image classification with spectral-based kernels.
Chen et al. [19] explored kernel sparse representation for HSI classification. However, to the best of
our knowledge, there are very few clustering methods that can deal with the nonlinearity problem.
Very recently, Morsier et al. [20] proposed a kernel-based low-rank and sparse representation algorithm
to explore the nonlinearity of HSIs. However, this approach only utilizes the spectral information,
without considering any spatial-contextual information.

In this paper, to address these issues, we introduce a novel kernel sparse subspace clustering
algorithm with a spatial max pooling operation (KSSC-SMP) for hyperspectral remote sensing data
interpretation, which is an extension of our previous conference work [21]. The proposed method
simultaneously explores the nonlinear structure and the inherent spectral-spatial attributes of HSIs.
On the one hand, with the kernel strategy, we map the feature points from the original feature space to
a much higher dimensional space to ensure that the linearly inseparable points are more separable.
On the other hand, in order to fully exploit the discriminative spectral-spatial information of HSIs and
the potential of the SSC model, the spatial max pooling operation is introduced to merge the obtained
representation coefficients into new features which incorporate the spatial-contextual information,
thereby improving the clustering performance and guaranteeing the spatial homogeneity of the final
clustering result.
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The rest of this paper is organized as follows. Section 2 reviews the classical SSC model. Section 3
introduces the proposed KSSC-SMP algorithm in detail. Section 4 describes the experimental results.
Section 5 analyzes the experimental results. Section 6 draws the conclusions and points out the future
research lines.

2. Sparse Subspace Clustering (SSC)

In this section, we briefly review the SSC algorithm. By using the HSI dataset itself as the
representation dictionary, the attributes of each data point can be comprehensively exploited within
the SSC framework [13]. For an HSI with a size of M× N × p, all the pixels can be considered as being
selected from a union of l affine subspaces S1 ∪ S2 ∪ · · · Sl of dimensions {di}l

i=1 in the full space Rp

with d1 + d2 + · · ·+ dl = p, where M denotes the height of the image, N represents the width of the
image, and p stands for the number of spectral channels. By treating each pixel as a column vector,
the HSI cube can be transformed into a 2-D matrix Y = [y1, y2, · · · , yMN ] ∈ Rp×MN . Then, with this
2-D matrix being utilized as the representation dictionary, the sparse optimization problem can be
modeled as follows:

minC‖C‖0 s.t. Y = YC + N, diag(C) = 0, CT1 = 1 (1)

where C ∈ RMN×MN denotes the representation coefficient matrix, N ∈ Rp×MN stands for the
representation error matrix, and 1 ∈ RMN is a vector whose elements are all ones. The constraint
diag(C) = 0 is used to eliminate the trivial solution of each pixel being represented as a linear
combination of itself [13]. The condition CT1 = 1 means that it adopts the affine subspace model, which
is a special linear subspace model [13,15]. As the `0-norm optimization problem is non-deterministic
polynomial hard (NP-hard), the relaxed `1-norm is usually adopted [22]:

minC‖C‖1 s.t. Y = YC + N, diag(C) = 0, CT1 = 1 (2)

The optimization problem in Equation (2) can be effectively solved by the alternating direction
method of multipliers (ADMM) algorithm [23–25]. We then construct the similarity graph using
the sparse coefficient matrix [15–17]. Meanwhile, the symmetric form is adopted to enhance the
connectivity of the graph:

W = |C|+ |C|T (3)

where W ∈ RMN×MN denotes the similarity graph whose element Wi,j represents the similarity
between pixel i and pixel j. The spectral clustering algorithm is then applied to the similarity graph to
obtain the final clustering result [26–28].

3. Kernel Sparse Subspace Clustering Algorithm with a Spatial Max Pooling Operation (KSSC-SMP)

In this section, we introduce the newly developed KSSC-SMP algorithm. The proposed approach
attempts to fully exploit both the nonlinear structure of HSIs and the potential of the SSC model
to achieve more accurate clustering results. Considering the complex nonlinear structure of HSIs,
we map the feature points to a much higher dimensional kernel space with the kernel strategy to
make them linearly separable. In this way, a more accurate representation coefficient matrix can be
obtained. In addition, the spatial max pooling operation is introduced to yield new features with these
coefficients by incorporating the spatial-contextual information.

3.1. Kernel Sparse Subspace Clustering Algorithm (KSSC)

The kernel sparse subspace clustering (KSSC) algorithm extends the SSC algorithm to nonlinear
manifolds by the use of a kernel strategy to map the feature points from the original space to a much
higher dimensional space, in order to make them linearly separable [29]. The kernel mapping directly
takes the signal in the kernel space as a feature [30] and represents each signal with the others from its
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own subspace, as in SSC. The sparse representation coefficient matrix can then be obtained by solving
the following optimization problem:

minC‖C‖1 + λ‖K(Y)− K(Y)C‖2
F s.t. diag(C) = 0, CT1 = 1 (4)

where λ represents a tradeoff between the data fidelity term and the sparsity term, and K : Rp → is
a mapping function from the input space to the reproducing kernel space [30]. We let KYY ∈ RMN×MN

denote a positive semi-definite kernel Gram matrix whose elements are computed as follows:

[KYY]i,j = [〈K(Y), K(Y)〉]i,j = K(yi)
TK
(
yj
)
= κ

(
yi, yj

)
(5)

where yi is the “spectral pixel” at location i in HSI Y and κ : Rp ×Rp → R represents the kernel
function, which measures the similarity of two arguments denoted as a pair of pixels. Commonly
used kernels include the radial basis function (RBF) kernel κ

(
yi, yj

)
= exp

(
−δ‖yi − yj‖2

)
and the

polynomial kernel κ
(
yi, yj

)
=
〈〈

yi, yj
〉
+ a
〉b, where δ, a, and b are the parameters of the kernel

functions. In this paper, the RBF kernel is adopted. As the feature space of the RBF kernel has
an infinite number of dimensions, and its value decreases with distance between (0, 1), it can be readily
interpreted as a similarity measure [30].

3.2. Incorporating Spatial Information with the Spatial Max Pooling Operation

Through sparse representation, the coefficients can reveal the underlying cluster structure and can
be directly utilized as features. However, when only using spectral information, a single representation
coefficient vector of the target pixel can only provide limited discriminative information [31,32].
Based on the fact that pixels within a local patch (where the center pixel is the target pixel to be
processed) have a high probability of being associated with the same thematic class, the sparse
representation coefficients of these pixels are also expected to be similar. Therefore, the spatial pooling
operation can be considered a reasonable way to merge these similar sparse representation coefficient
vectors and yield a new feature vector with better discriminative ability, which is an approach that has
been widely used in the literature [33,34].

At this point, considering the mechanism adopted by SSC (which pays more attention to larger
coefficients and tends to highlight their role), the spatial max pooling operation is adopted to merge
these sparse coefficient vectors into a new pooling vector, which suppresses the small elements and
preserves the large ones. This is because the larger the representation coefficients, the more similar to
the target pixel the corresponding representation atoms are, and the greater the contribution they make
to the sparse representation of the target pixel. In this process, since all the representation coefficients
within the local patch are simultaneously taken into consideration to generate a new representation
coefficient vector, the spatial-contextual information can be naturally incorporated. Moreover, it should
be noted that the spatial max pooling operation is performed in the representation dimension, not
directly on the pixel values.

Firstly, the 2-D sparse coefficient matrix C ∈ RMN×MN is reshaped into a 3-D cube Ĉ ∈ RM×N×MN

along rows, which can be seen as a “coefficient hyperspectral cube”. We then consider a local
neighborhood window of size S for each representation coefficient vector, with the currently processed
one as the center. Following this, the max pooling operation is performed on the local neighborhood
window to select the local largest coefficient value of each band to act as one element of the newly
generated coefficient vector for the target pixel. In this way, the more meaningful and discriminative
information among the local neighborhood is extracted by the newly generated sparse representation
coefficient vector, and the spatial-contextual information is naturally incorporated and fused in the
max pooling process to generate the new spectral-spatial features. Finally, the obtained coefficient
features are utilized to cluster the HSI. The process of spatial max pooling is illustrated in Figure 1.
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Figure 1. Graphical illustration of the process of spatial max pooling. Firstly, the 2-D sparse coefficient
matrix is reshaped into a 3-D cube along rows. Then, a local neighborhood window of size S is
considered for each representation coefficient vector, with the currently processed one as the center.
Following this, the max pooling operation is performed on the local neighborhood window to select
the local, largest coefficient value of each band to act as one element of the newly generated coefficient
vector for the target pixel. Lastly, with the obtained max pooling 3-D cube reshaped into a 2-D matrix,
the target max pooling coefficient matrix can be obtained.

3.3. The KSSC-SMP Algorithm

In order to further improve the clustering performance, we combine the two aforementioned
schemes into a unified framework to obtain the KSSC-SMP algorithm, which can simultaneously deal
with the complex nonlinear structure and utilize the spectral-spatial attributes of HSIs. The KSSC-SMP
algorithm can be summarized as shown in Algorithm 1.

Algorithm 1. The kernel sparse subspace clustering algorithm with a spatial max pooling operation
(KSSC-SMP) for hyperspectral remote sensing imagery

Input:
1) A 2-D matrix of the HSI containing a set of points {yi}MN

i=1 , in a union of l affine subspaces {Si}l
i=1;

2) Parameters, including the cluster number l, the regulation parameter λ, the kernel parameter δ, and the
window size S of the spatial max pooling operation.

Main algorithm:
1) Construct the kernel sparse representation optimization model (Equation (4)) and solve it to obtain the

kernel sparse representation coefficient matrix C using ADMM;
2) Conduct the spatial max pooling operation on C to obtain the max pooling coefficient matrix , as shown

in Figure 1;
3) Construct the similarity graph with the max pooling coefficient matrix;
4) Apply spectral clustering to the similarity graph to obtain the final clustering results;
Output:
A 2-D matrix which records the labels of the clustering result of the HSI.

The flowchart of the proposed KSSC-SMP algorithm is given in Figure 2.
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Figure 2. The flowchart of the proposed kernel sparse subspace clustering algorithm with a spatial max
pooling operation (KSSC-SMP) algorithm. Firstly, the kernel sparse representation model is adopted
to more precisely represent each target pixel by exploiting the inherent nonlinearity of hyperspectral
images (HSIs). The spatial max pooling operation is then introduced to yield new features with
these coefficients by incorporating the spatial-contextual information. Next, the similarity graph is
constructed in the `1-direct way. Lastly, by applying the spectral clustering algorithm to the similarity
graph, the final clustering result can be obtained.

4. Experimental Results

In order to evaluate the effectiveness of the proposed KSSC-SMP algorithm, the following
state-of-the-art clustering approaches were implemented for comparative purposes: FCM-S1 [8],
clustering by fast search and find of density peaks (CFSFDP) [35], SSC [13], S4C [15], and L2-SSC [16].
The number of clusters was determined by carefully observing the original image, and the parameters
of each clustering method were carefully optimized through the well-known grid search strategy.
The thematic information was manually determined to give a label for each cluster group through
cross-referencing between the clustering result and the original image. To thoroughly evaluate the
performance of each clustering method, both the visual cluster map and quantitative evaluation
measures are provided, including the accuracy for each class (producer’s accuracy), the overall
accuracy (OA), the kappa coefficient, the z-value, and the running time.

The confusion matrix is defined as shown in Table 1, which is a specific table layout that allows
visualization of the performance of an algorithm. In the clustering field, it is commonly called
a “matching matrix”. Based on the confusion matrix, the producer’s accuracy, OA, and kappa are
calculated as follows.

Table 1. Confusion matrix of an algorithm.

Actual Class
Predicted Class

1 · · · i · · · j · · · l Row Total

1 p1,1 · · · p1,i · · · p1,j · · · p1,l p1,+
...

...
...

...
...

...
...

...
...

i pi,1 · · · pi,i · · · pi,j · · · pi,l pi,+
...

...
...

...
...

...
...

...
...

j pj,1 · · · pj,i · · · pj,j · · · pj,l pj,+
...

...
...

...
...

...
...

...
...

l pl,1 · · · pl,i · · · pl,j · · · pl,l pl,+

Column total p+,1 · · · p+,i · · · p+,j · · · p+,l MN

l: the number of classes; MN: the total number of pixels; i: the ith class; pi,j: the number of pixels that are actually
class i but predicted as class j, where 1 ≤ i, j ≤ l; pi,+: the number of the pixels predicted as class i; p+,i : the number
of pixels of actual class i.

Producer′s accuracy : pi =
pi,i

pi,+
(6)

OA =

l
∑

i=1
pi,i

MN
(7)
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Kappa =

MN
l

∑
i=1

pi,i −
l

∑
i=1

(pi,+ · p+,i)

(MN)2 −
l

∑
i=1

(pi,+ · p+,i)

(8)

where pi refers to the producer’s accuracy of the ith class. The z-value measure is based on the
contingency table, as shown in Table 2, and it can be calculated as follows [36].

Table 2. Contingency table of two different clustering methods.

Algorithm Test Algorithm 2 Positive Algorithm 2 Negative Row Total

Algorithm 1 positive f1,1 f1,2 f1,1 + f1,2
Algorithm 1 negative f2,1 f2,2 f2,1 + f2,2

Column total f1,1 + f2,1 f1,2 + f2,2 f1,1 + f1,2 + f2,1 + f2,2

f1,1: the number of pixels that both algorithms classified correctly; f1,2: the number of pixels that Algorithm 1
classified correctly but Algorithm 2 misclassified; f2,1: the number of pixels that Algorithm 2 classified correctly but
Algorithm 1 misclassified; f2,2: the number of pixels that both algorithms misclassified.

z =
f1,2 − f2,1√

f1,2 + f2,1
(9)

where z represents the significance of the difference between the two clustering algorithms.

4.1. Experimental Results Obtained with the Salinas Image

The first experiment was conducted on the well-known Salinas image. This scene was acquired
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the Salinas Valley, CA,
USA, and consists of 512 × 217 pixels and 224 spectral reflectance bands in the wavelength range
of 0.4–2.5 um. Twenty bands (108–112, 154–167, and 224) corresponding to water absorption and
noisy bands were removed, leaving 204 bands for the experiment. In this scene, there are 16 different
classes, which are mainly different kinds of vegetation. A typical area at a size of 100 × 80 was
selected as the test data, containing six main land-cover classes: Brocoli-green-weeds-1 (Brocoli-1),
Brocoli-green-weeds-2 (Brocoli-2), Soil-vinyard-develop (Soil), Lettuce-romaine-4wk (Lettuce-4wk),
Lettuce-romaine-5wk (Lettuce-5wk), and Lettuce-romaine-6wk (Lettuce-6wk). To be consistent
with all the unsupervised methods, all the samples in the ground truth were utilized as the test
samples. The false-color composite image and the ground truth are shown in Figure 3a,b, respectively.
The parameters of each clustering algorithm in this experiment were set as shown in Table 3.

Table 3. Parameters of each clustering method for the Salinas image: fuzzy c-means with spatial
information (FCM-S1), clustering by fast search and find of density peaks (CFSFDP), sparse subspace
clustering (SSC), spectral-spatial sparse subspace clustering (S4C), `2-norm regularized sparse
subspace clustering (L2-SSC), and kernel sparse subspace clustering with a spatial max pooling
operation (KSSC-SMP).

Method Salinas

FCM-S1 l = 6, e = 2, α = 0.9
CFSFDP —

SSC l = 6, λ = 2.63× 10−6

S4C l = 6, λ = 8.78× 10−7, α = 5× 103, S = 3
L2-SSC l = 6, λ = 3.07× 10−6, α = 3× 103

KSSC-SMP l = 6, λ = 3.07× 10−6, δ = 10−7, S = 3

l: cluster number; e: fuzzy exponential; λ: tradeoff parameter; α: tradeoff parameter; δ: kernel parameter; S: window
size parameter.

The thematic maps obtained by each clustering algorithm with the Salinas image and the
corresponding quantitative evaluation of the clustering precision are provided in Figure 3 and Table 4,
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respectively. In Table 4, the best result in each row is shown in bold, with the second-best result
underlined. From the figure and the table, it can be clearly observed that the proposed KSSC-SMP
algorithm significantly improves the clustering performance and is superior to the other state-of-the-art
clustering methods. KSSC-SMP achieves an optimal or sub-optimal precision for all the classes.
As a result, it achieves the best OA of 99.89% and kappa of 0.9986.
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Table 4. Quantitative evaluation of the different clustering algorithms for the Salinas image: the best
result in each row is shown in bold, with the second-best result underlined.

Method Class FCM-S1 CFSFDP SSC S4C L2-SSC KSSC-SMP

Producer’s
accuracy (%)

Brocoli-1 99.01 100 99.90 99.51 98.72 100
Brocoli-2 46.93 0 0 31.75 100 100

Soil 97.10 97.96 99.49 97.30 95.32 99.95
Lettuce-4wk 93.39 93.95 94.23 93.67 95.08 100
Lettuce-5wk 100 100 100 100 94.84 99.46
Lettuce-6wk 100 95.20 93.45 100 100 100

Overall accuracy (OA) (%) 91.64 86.44 86.93 90.04 96.58 99.89
Kappa 0.8922 0.8241 0.8301 0.8731 0.9563 0.9986
z-value 13.2343 −4.4388 0 10.3494 18.6001 26.5168
Time (s) 59.11 75.52 9.24 × 102 9.59 × 102 8.95 × 102 3.81 × 102

4.2. Experimental Results Obtained with the University of Pavia Image

The second experimental dataset was the University of Pavia image scene, which was collected
by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor during a flight campaign over
Pavia, Northern Italy. This image has 610 × 340 pixels, with 103 spectral reflectance bands utilized in
the experiment after removing the water absorption and noisy bands. The geometric resolution of this
image is 1.3 m, with nine classes contained in the scene. Considering the computational complexity,
a typical sub-set at a size of 200 × 100 was utilized as the test data [15–17], with eight main land-cover
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classes: Metal sheet, Asphalt, Meadows, Trees, Bare soil, Bitumen, Bricks, and Shadows. All the
samples in the ground truth were utilized as the test samples. The composite false-color image and
the corresponding ground truth are provided in Figure 4a,b. Differing from the first experimental
dataset, this scene is of a typical city area that has a more complex distribution of land-cover classes.
The parameters of each clustering algorithm in this experiment were set as shown in Table 5.
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Table 5. Parameters of each clustering method for the University of Pavia image: fuzzy c-means
with spatial information (FCM-S1), clustering by fast search and find of density peaks (CFSFDP),
sparse subspace clustering (SSC), spectral-spatial sparse subspace clustering (S4C), `2-norm regularized
sparse subspace clustering (L2-SSC), and kernel sparse subspace clustering with a spatial max pooling
operation (KSSC-SMP).

Method University of Pavia

FCM-S1 l = 8, e = 2, α = 0.9
CFSFDP —

SSC l = 8, λ = 1.58× 10−5

S4C l = 8, λ = 1.58× 10−5, α = 3.0× 103, S = 3
L2-SSC l = 8, λ = 1.58× 10−5, α = 9× 103

KSSC-SMP l = 8, λ = 1.58× 10−5, δ = 10−8, S = 3

l: cluster number; e: fuzzy exponential; λ: tradeoff parameter; α: tradeoff parameter; δ: kernel parameter; S: window
size parameter.
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The cluster maps of the University of Pavia image obtained by each algorithm are shown in
Figure 4, with the corresponding quantitative evaluation provided in Table 6. For consistency, the
best result in each row is shown in bold and the second-best result is underlined. In this experiment,
it can be clearly seen that the clustering results are consistent with those of the first experiment, and
similar conclusions can be drawn. In this experiment, the proposed KSSC-SMP, again, achieves the
best clustering performance in both the visual and quantitative evaluations.

Table 6. Quantitative evaluation of the different clustering algorithms for the University of Pavia image.
The best result in each row is shown in bold, with the second-best result underlined.

Method Class FCM-S1 CFSFDP SSC S4C L2-SSC KSSC-SMP

Producer’s
accuracy (%)

Metal sheet 60.99 37.26 53.84 99.09 97.34 99.85
Asphalt 0 0 0.71 0 0.71 100

Meadows 87.37 100 52.60 99.09 92.97 99.09
Trees 58.73 0 100 87.30 60.32 100

Bare soil 24.97 21.41 22.04 31.93 37.20 51.58
Bitumen 100 100 85.58 98.37 87.67 95.47

Bricks 0 0 0 60.64 0 98.94
Shadows 99.72 100 98.61 98.61 93.91 100

Overall accuracy (OA) (%) 52.27 46.97 43.97 65.09 63.30 80.02
Kappa 0.4484 0.3874 0.3495 0.5852 0.5618 0.7583
z-value 21.9698 6.8536 0 36.5971 34.1658 48.1975
Time (s) 3.69 × 102 4.81× 102 1.29 × 104 7.40 × 103 1.33 × 104 1.98 × 103

5. Discussion

5.1. Experimental Results Analysis

From Figures 3 and 4 and Tables 4 and 6, it can be clearly observed that the clustering performance
of FCM-S1 is far from satisfactory, as this clustering model assumes that each cluster satisfies a convex
“ball-like” distribution, and it cannot handle the large spectral variability of HSIs [15]. As a result,
misclassification and within-class noise appear in the cluster maps. Compared with FCM-S1, CFSFDP
performs even more poorly with a higher level of misclassification, with only a few classes effectively
recognized. This suggests that the density-based segmentation strategy does not fit well with the
complex structure of HSIs. Specifically, both these methods completely fail to recognize the Asphalt
and Bricks classes in the second experiment.

We now compare the clustering results of the SSC algorithm and its extensions. Due to the
fact that it ignores the spatial information, the clustering results of SSC are far from satisfactory,
with a large amount of salt-and-pepper noise and numbers of misclassifications. Although SSC
successfully distinguishes most of the classes in the first experiment, showing great potential for
hyperspectral clustering, it performs very badly in the second experiment and obtains the lowest
clustering precision. Compared with SSC, S4C effectively improves the clustering performance,
by utilizing the spectral weighting strategy to guarantee that highly correlated pixels occupy the
dominant place in the representation process, and incorporates the spatial neighborhood information
with the local averaging constraint. For example, in the first experiment, the recognition precision of
Brocoli-green-weeds-2 and Lettuce-romaine-6wk is improved from 0% and 93.45% to 31.75% and 100%,
respectively. On the other hand, L2-SSC also obtains a much better clustering precision than that of the
original SSC method, which again suggests the importance of the spatial information from another
perspective. However, due to the limitations of the linear representation, there are still some classes
that are not effectively recognized by these two methods, such as the Asphalt and Bricks classes in
the second experiment. Compared with the three linear methods, the proposed KSSC-SMP algorithm
further improves the clustering performance by exploiting the nonlinear structure of the HSI and
generating more discriminative features by incorporating the spatial-contextual information with the
spatial max pooling operation. For example, in the second experiment, for the Asphalt and Bricks
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classes, which are beyond the recognition capability of most of the methods, the recognition precision
of KSSC-SMP is 100% and 98.94%, respectively, which suggests the superiority of the nonlinear method.
As a result, KSSC-SMP achieves much smoother cluster maps with a much higher clustering precision
in both experiments, which confirms the superiority of the nonlinear method. Increments in OA of
approximately 13%, 9%, and 3% are achieved in the first experiment, compared with that of SSC, S4C,
and L2-SSC, respectively, and increments in OA of approximately 26%, 15%, and 17% are achieved in
the second experiment. Overall, KSSC-SMP outperforms the other state-of-the-art clustering methods
and achieves the best clustering performance in both the visual and quantitative evaluations.

In order to reflect the significant difference between the clustering methods, we took the clustering
result of SSC as the baseline and calculated the z-values [36] of the other clustering results. For the
widely used 5% level of significance, we consider that there is a significant difference between the two
clustering methods if |z| >3.84. From Tables 4 and 6, it can be clearly observed that S4C and L2-SSC
perform significantly better than the original SSC algorithm. In addition, the proposed KSSC-SMP
algorithm also performs significantly better than the linear methods. On the other hand, from the last
rows of Tables 4 and 6, it can be seen that the four SSC-based algorithms require more computation
time than CFSFDP and FCM-S1, but they do provide better clustering accuracies. Fortunately, with the
development of computer hardware and the parallel computing technique, this will not be a major
problem for much longer.

5.2. Sensitivity Analysis of the Parameters

There are three parameters in the proposed KSSC-SMP algorithm: the regularization parameter
λ, the kernel parameter δ, and the window size parameter S. When analyzing one parameter, the
other two parameters were fixed at the optimal values. Both the AVIRIS Salinas image scene and the
University of Pavia image scene were utilized to test the sensitivity of the parameters of KSSC-SMP.

As a tradeoff between the data fidelity term and the sparsity term, the sensitivity of the
regularization parameter λ was first analyzed. For this parameter, we adopted the same strategy that
was used with the other SSC-based methods in [13,15]. In practice, parameter λ is decided by the
following formulation [15]:

λ =
β

µ
(10)

µ , min
i

max
j 6=i

∣∣∣yT
i yj

∣∣∣ (11)

where β is a coefficient, and µ can be exactly computed for each dataset.
From Equations (10) and (11), it can be easily found that the sensitivity of λ is actually decided

by β, as µ is fixed for a certain dataset. Therefore, in practice, we only need to fine tune β. Figure 5
shows the compromise between OA and β for both experimental images. In Figure 5, the optimal
clustering values of SSC, S4C, and L2-SSC are also provided. From the figure, it can be observed that β

is independent of the dataset, to some degree, as the optimal value always falls into a relatively narrow
range of [1000, 1400]. For a certain dataset, β can be easily fine-tuned. In addition, it should be noted
that KSSC-SMP always achieves a much better precision than the optimal values of the other three
linear SSC-based methods, which further demonstrates its effectiveness.

The kernel parameter δ controls the quality of the projection of the feature points from the original
space to the kernel space, and is quite important for the proposed KSSC-SMP algorithm. Similarly,
the sensitivity of the kernel parameter was analyzed through a series of experiments, as shown in
Figure 6. From the figure, it can be seen that the KSSC-SMP algorithm is relatively robust for this
parameter, and its performance is relatively stable. The optimal value of δ varies for the different
datasets. For the Salinas image, the optimal value is 1 × 10−7, and for the University of Pavia image,
it is 1 × 10−8. However, it can be seen that over a very large range of δ, KSSC-SMP can achieve a better
performance than the three linear methods. Therefore, the KSSC-SMP algorithm is suitable for use in
real applications.
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Figure 6. Analysis of parameter δ in the clustering performance for both image scenes. (a) Change
trend of OA versus δ for the Salinas image; (b) Change trend of OA versus δ for the University of
Pavia image.

The window size parameter S controls the spatial max pooling operation. The influence of this
parameter on the clustering performance is shown in Figure 7, using a similar strategy to that adopted
for the other two parameters. From the figure, it can be seen that the spatial information plays a very
important role in the clustering process. For both experimental scenes, the optimal value of parameter
S is 3. Both these scenes have a relatively complex distribution of land-cover classes. Generally,
parameter S is closely related to the resolution of the image. Again, over a large range of parameter S,
KSSC-SMP can achieve a better clustering performance than the three linear methods, which further
confirms its effectiveness.
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scenes. (a) Change trend of OA versus S for the Salinas image. (b) Change trend of OA versus S for the
University of Pavia image.

6. Conclusions and Future Lines of Research

In this paper, we have proposed a new kernel sparse subspace clustering algorithm with a spatial
max pooling operation (KSSC-SMP) for HSI data interpretation. The proposed approach focuses on
exploiting the complex nonlinear structure of HSIs and obtaining a more precise representation
coefficient matrix with the kernel sparse representation. In addition, the spatial max pooling
operation is introduced to these coefficients to yield new features to fully exploit the discriminative
spectral-spatial information of HSIs and the potential of the SSC model. Thereby, KSSC-SMP can
effectively improve the clustering performance and guarantee the spatial homogeneity of the final
clustering result.

Although the results show that the KSSC-SMP algorithm is very competitive, there are several
aspects that could be improved. For instance, the method could be further improved by adaptively
determining the regularization parameters and allowing for the extraction of more discriminative
spatial features. All of these issues will be addressed in our future work.
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